Penerapan Text Mining Dengan Algoritma Random Forest Menganalisis Sentimen Ulasan SATUSEHAT Mobile
Main Article Content
Abstract
Aplikasi SATUSEHAT Mobile merupakan hasil transformasi dari PeduliLindungi yang dikembangkan oleh Kementerian Kesehatan (Kemenkes) sebagai platform untuk menyebarkan informasi dan program kesehatan kepada masyarakat. Dengan lebih dari 1 juta ulasan dan nilai rating 3,7 bintang di Google Play Store, penting untuk menganalisis sentimen ulasan pengguna guna memahami pandangan pengguna terhadap aplikasi dan untuk meningkatkan kualitas aplikasi tersebut. Melalui pendekatan metode Teknik Text Mining, data ulasan pengguna dieksplorasi menggunakan algoritma pembelajaran mesin. Algoritma Multinomial Naive Bayes, K-Nearest Neighbors dan Decision Tree digunakan untuk membandingkan kinerja Random Forest dalam menganilisis sentimen ulasan pengguna tersebut. Hasilnya penelitian menunjukkan bahwa algoritma Random Forest memberikan analisis sentimen ulasan pengguna dengan tingkat akurasi tertinggi, sementara algoritma K-Nearest Neighbors (KNN) memiliki tingkat akurasi terendah. Penelitian ini memiliki relevansi penting dalam meningkatkan kualitas aplikasi SATUSEHAT Mobile berdasarkan pandangan dan umpan balik ulasan pengguna.
Article Details
References
Rokom, “Besok PeduliLindungi Resmi Bertransformasi Menjadi SATUSEHAT Mobile,” sehatNegeriku. Accessed: Jun. 04, 2023. [Online]. Available: https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230228/2042474/besok-pedulilindungi-resmi-bertransformasi-menjadi-satusehat-mobile/
Kementerian Kesehatan Republik Indonesia, “SATUSEHAT Mobile.” Accessed: Jun. 04, 2023. [Online]. Available: https://play.google.com/store/apps/details?id=com.telkom.tracencare&hl=en_US
H. Yang and P. Liang, “Identification and Classification of Requirements from App User Reviews.” [Online]. Available: http://www.perculasoft.com/appreviews/
D. T. Alamanda, A. Ramdhani, I. Kania, W. Susilawati, and E. S. Hadi, “Sentiment Analysis Using Text Mining of Indonesia Tourism Reviews via Social Media,” International Journal of Humanities, Arts and Social Sciences, vol. 5, no. 2, pp. 72–82, Apr. 2019, doi: 10.20469/ijhss.5.10004-2.
I. Saputra et al., “Text Mining of PeduliLindungi Application Reviews on Google Play Store,” vol. 15, no. 2, pp. 1979–276, 2022, doi: 10.30998/faktorexacta.v15i2.10629.
I. Yunanto and S. Yulianto, “TWITTER SENTIMENT ANALYSIS PEDULILINDUNGI APPLICATION USING NAÏVE BAYES AND SUPPORT VECTOR MACHINE,” Jurnal Teknik Informatika (Jutif), vol. 3, no. 4, pp. 807–814, Aug. 2022, doi: 10.20884/1.jutif.2022.3.4.292.
D. Antons, E. Grünwald, P. Cichy, and T. O. Salge, “The application of text mining methods in innovation research: current state, evolution patterns, and development priorities,” in R and D Management, Blackwell Publishing Ltd, Jun. 2020, pp. 329–351. doi: 10.1111/radm.12408.
“View of A COMPARISON STUDY ON TEXT MINING AND SENTIMENT ANALYSIS FEATURES AND FUNCTIONS USING SAS ENTERPRISE MINER, PYTHON AND R”.
O. J. Achilonu, V. Olago, E. Singh, R. M. J. C. Eijkemans, G. Nimako, and E. Musenge, “A text mining approach in the classification of free-text cancer pathology reports from the south african national health laboratory services,” Information (Switzerland), vol. 12, no. 11, Nov. 2021, doi: 10.3390/info12110451.
Z. Rais, F. T. T. Hakiki, and R. Aprianti, “Sentiment Analysis of Peduli Lindungi Application Using the Naive Bayes Method,” SAINSMAT: Journal of Applied Sciences, Mathematics, and Its Education, vol. 11, no. 1, pp. 23–29, Jun. 2022, doi: 10.35877/sainsmat794.
S. Q. Ong, M. B. M. Pauzi, and K. H. Gan, “Text mining in mosquito-borne disease: A systematic review,” Acta Tropica, vol. 231. Elsevier B.V., Jul. 01, 2022. doi: 10.1016/j.actatropica.2022.106447.
M. Abbas, K. Ali, A. Jamali, K. Ali Memon, and A. Aleem Jamali, “Multinomial Naive Bayes Classification Model for Sentiment Analysis,” IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 3, p. 62, 2019, doi: 10.13140/RG.2.2.30021.40169.
H. Chen and D. Fu, “An Improved Naïve Bayes Classifier for Large Scale Text,” 2018.
R. Manikandan and D. R. Sivakumar, “Machine learning algorithms for text-documents classification: A review,” 2018. [Online]. Available: www.academicsjournal.com
B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” Journal of Applied Science and Technology Trends, vol. 2, no. 01, pp. 20–28, Mar. 2021, doi: 10.38094/jastt20165.
M. A. Ahmed, A. Rizaner, and H. U. Ali, “A novel decision tree classification based on post-pruning with Bayes minimum risk,” PLoS One, vol. 13, no. 4, Apr. 2018, doi: 10.1371/journal.pone.0194168.
J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, “A comparison of random forest variable selection methods for classification prediction modeling,” Expert Syst Appl, vol. 134, pp. 93–101, Nov. 2019, doi: 10.1016/j.eswa.2019.05.028.
S. Fransiska and A. Irham Gufroni, “Sentiment Analysis Provider by.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Scientific Journal of Informatics, vol. 7, no. 2, pp. 2407–7658, 2020, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji
M. Khoirul, U. Hayati, and O. Nurdiawan, “ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES,” 2023.
M. Farid, S. Wibowo, N. F. Puspitasari, and B. Satya, “PENERAPAN DATA MINING DAN ALGORITMA NAÏVE BAYES UNTUK PEMILIHAN KONSENTRASI MAHASISWA MENGGUNAKAN METODE KLASIFIKASI,” 2022.
R. Budi Widodo, Machine Learning Metode k-Nearest Neighbors Klasifikasi Angka Bahasa Isyarat, I., vol. I. 2022.